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Abstract
We present a Green’s dyadic formulation to calculate the Casimir energy
for a dielectric–diamagnetic cylinder with the speed of light differing inside
and outside. Although the result is in general divergent, special cases are
meaningful. It is pointed out how the self-stress on a purely dielectric cylinder
vanishes through second order in the deviation of the permittivity from its
vacuum value, in agreement with the result calculated from the sum of van der
Waals forces.

PACS numbers: 03.65.Sq, 03.70.+k, 11.10.Gh, 11.30.Ly

1. Formulation of the Green’s dyadic approach

The electromagnetic Green’s dyadic functions [1] have been successfully used on many
occasions (for an extensive view see [2] and references therein) and can be applied to very
complicated geometries. Their use is critical in this calculation [3]. This approach helps us to
compute the vacuum expectation value of the fields rigorously; we show that the approach is
both illuminating of the physics and unambiguous.

1.1. Green’s dyadic equations; formalism

In a medium of constant electric permittivity ε′ and magnetic permeability µ′, we insert an
infinitely long cylinder of radius a with permittivity ε and permeability µ. The product of
these parameters is different from that of the outside parameters. There are no real charges of

1 On sabbatical leave at the Department of Physics, Washington University, St Louis, MO 63130, USA.
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any kind present in the problem, ρ = J = 0, and since we work at a fixed frequency we can
Fourier transform the electric and magnetic fields,

E(r, t) =
∫ ∞

∞

dω

2π
E(r, ω) e−iωt , B(r, t) =

∫ ∞

∞

dω

2π
B(r, ω) e−iωt , (1)

and the corresponding Maxwell’s equations are

∇ × E = iωµH, ∇ · D = 0, (2a)

∇ × H = −iωεE, ∇ · B = 0. (2b)

In order to write the Green’s dyadic equations, we introduce a polarization source P. The
first equation in (2b) and the second one in (2a) then get changed to

∇ × H = −iωεE − iωP, ∇ · D = −∇ · P. (3)

The linear relation of polarization source with the electric field defines the Green’s dyadic as

E(x) =
∫

(dx ′)Γ(x, x ′) · P(x ′). (4)

Since the response is translationally invariant in time, we work with the Fourier transform
of the dyadic at a given frequency ω. We can then, by simple substitution, write the
dyadic Maxwell’s equations in a medium characterized by a dielectric constant ε and a
permeability µ:2

∇ × Γ′ − iωµ(ω)Φ = 1

ε(ω)
∇ × 1, ∇ ·Φ = 0, (5a)

−∇ × Φ − iωε(ω)Γ′ = 0, ∇ ·Γ′ = 0, (5b)

and where the unit dyadic 1 includes a three-dimensional δ function, 1 = 1δ(r − r ′). Quantum
mechanically, these Green’s dyadics give the one-loop vacuum expectation values of the
product of fields at a given frequency ω,

〈E(r)E(r′)〉 = h̄

i
Γ(r, r′), 〈H(r)H(r′)〉 = −h̄

i

1

ω2µ2

−→∇ × Γ(r, r′) × ←−∇′. (6)

Thus, from the knowledge of the classical Green’s dyadics, we can calculate the vacuum
energy or stress.

Since the TE and TM modes do not separate, we cannot use the general waveguide
decomposition of modes into those of TE and TM types3. However, we can introduce
the appropriate partial wave decomposition for a cylinder, in terms of cylindrical
coordinates (r, θ, z)4:

Γ′(r, r′;ω) =
∞∑

m=−∞

∫ ∞

−∞

dk

2π

{
(∇ × ẑ)fm(r; k, ω)χmk(θ, z)

+
i

ωε
∇ × (∇ × ẑ)gm(r; k, ω)χmk(θ, z)

}
, (7a)

2 In order to have divergenceless Green dyadics, we redefine the electric Green’s dyadic in the following way:
Γ′(r, r′, ω) = Γ(r, r′, ω) + 1

ε(ω)
δ(r − r′) and Φ is the magnetic dyadic.

3 For example as given in [4]. However, this is here impossible because the TE and TM modes do not separate.
See [5].
4 A slight modification of that given for a conducting cylindrical shell [6].
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Φ(r, r′;ω) =
∞∑

m=−∞

∫ ∞

−∞

dk

2π

{
(∇ × ẑ)g̃m(r; k, ω)χmk(θ, z)

− iε

ωµ
∇ × (∇ × ẑ)f̃ m(r; k, ω)χmk(θ, z)

}
, (7b)

where the cylindrical harmonics are χ(θ, z) = 1√
2π

eimθ eikz and the dependence of fm, etc on
r′ is implicit. Note that these are vectors in the second tensor index. Because of the presence
of these harmonics, we have

∇ × ẑ → r̂
im

r
− θ̂

∂

∂r
≡ M and ∇ × (∇ × ẑ) → r̂ik

∂

∂r
− θ̂

mk

r
− ẑdm ≡ N , (8)

in terms of the cylinder operator dm = 1
r

∂
∂r

r ∂
∂r

− m2

r2 . It is trivial to see that the divergence of
(7a) and (7b) is zero, satisfying immediately the two dyadic Maxwell’s equations. Now, if we
use the Maxwell equation (5b), we conclude5

g̃m = gm and (dm − k2)f̃ m = −ω2µfm. (9)

More elaborate work is needed to obtain a condition from the other Maxwell equation (5a).
Using the above we can write (5a) as∑

m

∫ ∞

−∞

dk

2π

{
−M (dm − k2)

ω2µ
f̃ m − i

ωε
(dm − k2)Ngm

}
χmk(θ, z)

=
∑
m

∫ ∞

−∞

dk

2π

{
iωµNgm + εMf̃ m

}
χmk(θ, z) +

1

ε
∇ × 1. (10)

If we multiply the above by the expression
∫ 2π

0

∫ ∞
−∞ dθ dzχ∗

m′k′(θ, z) and apply∫ 2π

0

∫ ∞
−∞ dθ dzχ∗

m′k′(θ, z)χmk(θ, z) = 2πδ(k − k′)δmm′ , we find

− 1

ω2µ
N (dm − k2 + ω2µε)f̃ m − i

ωε
M(dm − k2 + ω2µε)gm

= 1

ε

∫ 2π

0

∫ ∞

−∞
dθ dzχ∗

mk(θ, z)(∇ × 1)
1

r
δ(r − r ′)δ(θ − θ ′)δ(z − z′), (11)

where the delta functions are now made explicit. By dotting this expression with ẑ, we note
that ẑ · M = 0 and ẑ · N = −dm and after a little manipulation we arrive at the fourth-order
differential equation:

dmDmf̃m(r; r ′, θ ′, z′) = ω2µ

ε
M′∗ 1

r
δ(r − r ′)χ∗

mk(θ
′, z′). (12)

If we now dot it with (∇ × ẑ), we learn that a similar equation holds for gm:

dmDmgm(r; r ′, θ ′, z′) = −iωN ′∗ 1

r
δ(r − r ′)χ∗

mk(θ
′, z′), (13)

where we have made the second, previously suppressed, position arguments explicit and the
prime on the differential operator signifies action on the second primed argument6.

To solve these equations, we separate variables in the second argument,

f̃m(r, r′) =
[
M′∗Fm(r, r ′; k, ω) +

1

ω
N ′∗F̃ m(r, r ′; k, ω)

]
χ∗

mk(θ
′, z′), (14a)

5 The ambiguity in solving these equations is absorbed in the definition of subsequent constants of integration.
6 The Bessel operator appears, Dm = dm + λ2, λ2 = ω2εµ − k2.
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gm(r, r′) =
[
− i

ω
N ′∗Gm(r, r ′; k, ω) − iM′∗G̃m(r, r ′; k, ω)

]
χ∗

mk(θ
′, z′), (14b)

where we have introduced the two scalar Green’s functions Fm,Gm satisfying

dmDmFm(r, r ′) = ω2µ

ε

1

r
δ(r − r ′) and dmDmGm(r, r ′) = ω2 1

r
δ(r − r ′), (15)

while F̃ m and G̃m are annihilated by the operator dmDm,

dmDmF̃ (r, r ′) = dmDmG̃(r, r ′) = 0. (16)

1.2. Green’s dyadic solutions

The Green’s dyadics now have the form

Γ′(r, r′;ω) =
∞∑

m=−∞

∫ ∞

−∞

dk

2π

{
MM′∗

(
−dm − k2

ω2µ

)
Fm(r, r ′) + NN ′∗ 1

ω2ε
Gm(r, r ′)

+
1

ω
MN ′∗

(
−dm − k2

ω2µ

)
F̃ m(r, r ′) +

1

ωε
NM′∗G̃m(r, r ′)

}
χmk(θ, z)χ∗

mk(θ
′, z′),

(17a)

Φ(r, r′;ω) =
∞∑

m=−∞

∫ ∞

−∞

dk

2π

{
− i

ω
MN ′∗Gm(r, r ′) − iε

ωµ
NM′∗Fm(r, r ′)

− iMM′∗G̃m(r, r ′) − iε

ω2µ
NN ′∗F̃ m(r, r ′)

}
χmk(θ, z)χ∗

mk(θ
′, z′). (17b)

In the following, we will apply these equations to a dielectric–diamagnetic cylinder of radius
a, where the interior of the cylinder is characterized by a permittivity ε and permeability µ,
while the outside is vacuum, so ε = µ = 1 there. Let us consider the case that the source
point is outside, r ′ > a. If the field point is also outside, r, r ′ > a, the scalar Green’s
functions F ′

m,G′
m, F̃ ′, G̃′ that make up the above Green’s dyadics (we designate with primes

the outside scalar Green’s functions or constants) obey the differential equations (15) and (16)
with ε = µ = 1. The solutions to these equations are7

F ′
m(r, r ′) = ω2

λ′2

[
a′F

m

r ′|m| + b′F
m Hm(λ′r ′)

]
r−|m| − ω2

λ′2
1

2|m|
(

r<

r>

)|m|

+

[
A′F

m

r ′|m| + B ′F
m Hm(λ′r ′)

]
Hm(λ′r) − ω2

λ′2
π

2i
Jm(λ′r<)Hm(λ′r>), (18)

while G′
m has the same form with the constants a′F

m , b′F
m ,A′F

m , B ′F
m replaced by

a′G
m , b′G

m ,A′G
m ,B ′G

m , respectively. The homogeneous differential equations have solutions

F̃ ′
m(r, r ′) = ω2

λ′2

[
a′F̃

m

r ′|m| + b′F̃
m Hm(λ′r ′)

]
r−|m| +

[
A′F̃

m

r ′|m| + B ′F̃
m Hm(λ′r ′)

]
Hm(λ′r), (19)

while in G̃′
m we replace a′F̃ → a′G̃, etc.

When the source point is outside and the field point is inside, all the Green’s functions
satisfy the homogeneous equations (16) with ε, µ 
= 1, and then Fm,Gm, F̃ m, G̃m are of the

7 For details see [3, 9].
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same form as in equation (19) with the corresponding change of constants. In all of the above,
the outside and inside forms of λ are given by λ′2 = ω2 − k2 and λ2 = ω2µε − k2.

The various constants are to be determined, as far as possible, by the boundary conditions
at r = a. The boundary conditions at the surface of the dielectric cylinder are the continuity
of tangential components of the electric field, of the normal component of the electric
displacement, of the normal component of the magnetic induction and of the tangential
components of the magnetic field (we assume that there are no surface charges or currents).
In terms of the Green’s dyadics, the conditions read

r̂ · εΓ′
∣∣∣∣
r=a+

r=a−
= 0, θ̂ ·Γ′

∣∣∣∣
r=a+

r=a−
= 0, ẑ ·Γ′

∣∣∣∣
r=a+

r=a−
= 0, (20a)

r̂ · µΦ

∣∣∣∣
r=a+

r=a−
= 0, θ̂ ·Φ

∣∣∣∣
r=a+

r=a−
= 0, ẑ ·Φ

∣∣∣∣
r=a+

r=a−
= 0. (20b)

By imposing these boundary conditions, we find that the only constants contributing to the
energy are

BG̃
m = −ε2

µ
(1 − εµ)

mkω

λλ′D
Jm(λa)Hm(λ′a)BF

m, (21a)

B ′G̃
m = −

(
λ

λ′

)2
ε

µ
(1 − εµ)

mkω

λλ′D
J 2

m(λa)BF
m, (21b)

B ′F
m = ω2

λ′2
π

2i

Jm(λ′a)

Hm(λ′a)
+

(
λ

λ′

)2
ε

µ

Jm(λa)

Hm(λ′a)
BF

m, (21c)

BF̃
m = − µ

ε2
(1 − εµ)

mkω

λλ′D̃
Jm(λa)Hm(λ′a)BG

m , (21d)

B ′F̃
m = −

(
λ

λ′

)2 1

ε
(1 − εµ)

mkω

λλ′D̃
J 2

m(λa)BG
m , (21e)

B ′G
m = ω2

λ′2
π

2i

Jm(λ′a)

Hm(λ′a)
+

(
λ

λ′

)2 1

ε

Jm(λa)

Hm(λ′a)
BG

m , (21f )

all in terms of BF
m = −µ

ε
ω2

λλ′
D



and BG
m = −ε ω2

λλ′
D̃



.
The denominators occurring here are8


 = (1 − εµ)2 m2k2ω2

λ2λ′2 J 2
m(λa)H 2

m(λ′a) − DD̃, (22a)

D = ελ′aJ ′
m(λa)Hm(λ′a) − λaH ′

m(λ′a)Jm(λa), (22b)

D̃ = µλ′aJ ′
m(λa)Hm(λ′a) − λaH ′

m(λ′a)Jm(λa). (22c)

It is now easy to check that the terms in the Green’s functions that involve powers of r
or r ′ do not contribute to the electric or magnetic field. So, even though we are not able to
determine all the constants (note that there is some ambiguity in these since they cannot be

8 The denominator structure appearing in 
 is precisely that given by Stratton [5] and is the basis for the calculation
given for example in [7]. It is also employed in an independent rederivation of the Casimir energy for a dilute
dielectric cylinder [8].
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uniquely determined), it is not an issue since the energy will be well defined [3, 9]. These
constants always enter in the same form and therefore their individual values are not relevant.
As we might have anticipated, only the pure Bessel function terms contribute9.

1.3. Stress on the cylinder

We are now in a position to calculate the pressure on the surface of the cylinder from the
radial–radial component of the stress tensor

P = 〈Trr〉(a−) − 〈Trr〉(a+), (23)

where Trr = 1
2

[
ε
(
E2

θ +E2
z −E2

r

)
+µ

(
H 2

θ +H 2
z −H 2

r

)]
. As a result of the boundary conditions,

the pressure on the cylindrical walls is given by the expectation value of the squares of field
components just outside the cylinder; therefore,

Trr

∣∣
a− − Trr

∣∣
a+ = ε − 1

2

(
E2

θ + E2
z +

E2
r

ε

) ∣∣∣∣
a+

+
µ − 1

2

(
H 2

θ + H 2
z +

H 2
r

µ

) ∣∣∣∣
a+

, (24)

where the expectation values are given by (6) in terms of the Green’s functions. We obtain the
pressure on the cylinder as

P = ε − 1

16π3a4

∞∑
m=−∞

∫ ∞

−∞
dζa dka

h̄


̃

{
K ′2

m(y ′)Im(y)I ′
m(y)y(k2a2 − ζ 2a2µ) − K ′

m(y ′)I 2
m(y)

×Km(y ′)
[
m2k2a2ζ 2a2

y ′3ε

(
−2(ε + 1)(1 − εµ) +

k2a2 − ζ 2a2ε

y2
(1 − εµ)2

)

− y2

y ′

(
m2

y ′2

(
k2a2 − ζ 2a2

ε

)
+ y ′2

)]
−K ′

m(y ′)I ′2
m (y)Km(y ′)µy ′(k2a2 − ζ 2a2ε)

− Im(y)I ′
m(y)K2

m(y ′)y
[
m2

y ′2 (k2a2µ − ζ 2a2) + y ′2µ
] }

+ {(ε ↔ µ)}, (25)

where we have performed the Euclidean rotation ω → iζ, λ → iκ , and 
̃ is the rotated 
.
Here y = κa, y ′ = κ ′a and the last bracket indicates that the expression there is similar to that
for the electric part by switching ε and µ, showing manifest symmetry between the electric and
magnetic parts. However, this expression is incomplete. It contains an unobservable ‘bulk’
energy contribution, which the formalism would give if a medium either that of the interior
with dielectric constant ε and permeability µ or that of the exterior with dielectric constant
and permeability unity fills all the space [10]. The corresponding stresses are computed from
the free Green’s functions which satisfy (15) and have solutions

F (0)
m (r, r ′) = µ

ε
G(0)

m (r, r ′) = −ω2µ

ελ2

[
1

2|m|
(

r<

r>

)|m|
+

π

2i
Jm(λr<)Hm(λr>)

]
, (26)

where 0 < r, r ′ < ∞. Note that in this case both F̃ (0)
m and G̃(0)

m are zero. After the Euclidean
rotation, the bulk pressure becomes

P b = T (0)
rr (a−) − T (0)

rr (a+) = h̄

16π3a4

∞∑
m=−∞

∫ ∞

−∞
dζa dka{y2I ′

m(y)K ′
m(y)

− (y2 + m2)Im(y)Km(y) − y ′2I ′
m(y ′)K ′

m(y ′) + (y ′2 + m2)Im(y ′)Km(y ′)}. (27)

This term must be subtracted from the pressure given in (25). Note that P b = 0 in the special
case εµ = 1 as it should be.

9 It might be thought that m = 0 is a special case, and indeed 1
2|m|

(
r<
r>

)|m| → 1
2 ln r<

r>
, but just as the latter is

correctly interpreted as the limit as |m| → 0, so the coefficients in the Green’s functions turn out to be just the m = 0
limits for those given above, so the m = 0 case is properly incorporated.
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2. Dilute dielectric cylinder

We now turn to the case of a dilute dielectric medium filling the cylinder, that is, set µ = 1
and consider ε − 1 as small. We can then expand the integrand in (25) and (27) in powers of
(ε − 1). Because the expression in (25) is already proportional to that factor, we need to only
expand the integrand to first order. The total pressure can then be written as

P − P b = h̄

8π2a4
(ε − 1)2

∞∑
m=−∞

∫ ∞

0
dy

{
y4

2

[
1

2
K ′2

m(y)I ′
m(y)Im(y)

+ K ′2
m(y)I ′2

m (y)
y

4
− K ′2

m(y)I 2
m(y)

y

4

(
1 +

m2

y2

)
+ K ′

m(y)I ′2
m (y)Km(y)

+ K2
m(y)I 2

m(y)
y

2

(
1 +

m2

y2

)(
1 − m2

2y2

)
− K2

m(y)I ′2
m (y)

y

2

(
1 − m2

2y2

)

+ K2
m(y)I ′

m(y)Im(y)

(
1 +

m2

2y2

)]
+

3y

16
[Im(y)Km(y)]′

}
. (28)

Thus, the total stress vanishes in leading order which is consistent with the interpretation of
the Casimir energy as arising from the pairwise interaction of dilutely distributed molecules.
Several methods to compute this integral are explained in great detail in [3, 9]. There it is
shown that making use of the asymptotic expansion for the Bessel functions we can numerically
evaluate the integral

P = (ε − 1)2

32π2a4
(−0.007 612 + 0.287 168 + 0.024 417 − 0.002 371 − 0.000 012 − 0.301 590)

= 0.000 000, (29)

and by introducing an exponential regulator e−δy in (28) we can unambiguously separate the
two divergent terms

Pdiv = (ε − 1)2

32π2a4

(
13π2

32δ3
− 315π

8192δ

)
. (30)

The form of the divergences is exactly as expected [11, 12]. In particular, there is no 1/δ2

divergence. How do we interpret these terms? It is perhaps easiest to imagine that δ is given
in terms of a proper-time cut-off, δ = τ/a, τ → 0+. Then if we consider the energy, rather
than the pressure, the divergent terms have the form Ediv = e3

aL
τ 3 + e1

L
a

1
τ

. Here L is the (large)
length of the cylinder. Thus, the leading divergence corresponds to an energy term proportional
to the surface of the cylinder, and it therefore appears sensible to absorb it into a renormalized
surface energy which enters into a phenomenological description of the material system. The
1/τ divergence is more problematic. It is proportional to the ratio of the length to the diameter
of the cylinder, so it seems likely that this would be interpretable as an energy term referring
to the shape of the body. In any case, although the structure of the divergences is universal,
the coefficients of these divergences depend in detail on the particular regularization scheme
adopted. The nature of divergences in such Casimir calculations is still under active study
[2, 13–15]. In contrast, the term proportional to (ε − 1)2/a2 is unique. The universality of the
finite Casimir term makes it hard not to think it has some real significance. Thus, of course,
it could not have been any other than that zero value given by the van der Waals calculations
[7, 16, 17].
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3. Conclusion

We have shown how the Green’s dyadic formulation, modified for dielectric materials, exhibits
a transparent way to calculate the Casimir energies of a dielectric–diamagnetic cylinder and
showed that in the dilute case it coincides with that obtained by summing the van der Waals
energies of the constituent molecules. However, the identity is not really that trivial, because
both the van der Waals and the Casimir energies contain divergent contributions. This is
particularly crucial when one is considering the self-stress of a single body rather than the
energy of interaction of distinct bodies. It was nontrivial to show the analogue for the case
of the dielectric sphere [18], and the calculation for the dielectric cylinder turned out to be
extraordinarily difficult.
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